Skip to main content
Filter faculty by: and
Search the faculty research descriptions using keywords or phrases:   

My Lab focuses on studies of neural circuits underlying attention, executive function and stress response in the human brain, as well as the breakdown in these functions in neuropsychiatric and neurodevelopment disorders such as schizophrenia, substance abuse, depression and autism. We are particular interested in identifying neural precursors and predictors of illness in high-risk adolescents, including risk for psychosis, mood disorders and substance abuse. Our research uses multimodal imaging integrating functional magnetic resonance imaging, electrophysiological scalp recording, experimental psychology and neuropsychological assessment techniques to explore the behavioral and neurophysiological dimensions of information processing. Much of the current work focuses on mapping the role of stress neurobiology in predicting severity of anxiety and anhedonia in adolescents and procuring risk for severe psychiatric developmental disorders.


Besheer, Joyce Website | Email Publications
PHD PROGRAM Neuroscience
RESEARCH INTEREST Behavior, Neurobiology, Pharmacology

Research in my lab examines the neurobiological mechanisms underlying alcoholism and addiction. At present studies are focused on the interaction between stress-related systems and sensitivity to alcohol, in order to better understand the mechanisms that underlie increased alcohol drinking during stressful episodes. We use an array of behavioral (e.g., operant self-administration, drug discrimination) and behavioral pharmacology techniques, including targeted brain regional drug injections, to functionally evaluate the role of specific molecular targets. In parallel to the behavioral studies, we use immunohistochemistry and Western blot techniques to examine alterations in the expression of various molecular targets following stress exposure. We are also applying these techniques to examine and integrate the study of depression that emerges following stress hormone exposure.


Boettiger, Charlotte Website | Email Publications
PHD PROGRAM Neuroscience

My lab uses a cognitive neuroscience approach to understand the neurobiology of drug addiction in humans. The tools we use include fMRI, cognitive testing, physiological monitoring, pharmacology, and genetic testing. We specifically seek to determine 1) how the brain learns new stimulus-response associations and replaces learned associations, 2) the neurobiological mechanisms underlying the tendency to select immediate over delayed rewards, and 3) the neural bases of addiction-related attentional bias.


Carelli, Regina M. Website | Email Publications
PHD PROGRAM Neuroscience

Research in the Carelli laboratory is in the area of behavioral neuroscience. Our studies focus on the neurobiological basis of motivated behaviors, including drug addiction. Electrophysiology and electrochemistry procedures are used during behavior to examine the role of the brain ‘reward’ circuit in natural (e.g., food) versus drug (e.g., cocaine) reward. Studies incorporate classical and operant conditioning procedures to study the role of the nucleus accumbens (and dopamine) and associated brain regions in learning and memory, as they relate to motivated behaviors.


Christoffel, Dan Website | Email Publications
PHD PROGRAM Neuroscience

Dr. Christoffel aims to understand how chronic exposure to particular stimuli (i.e. stress, food, drugs) alters the functioning of specific neural circuits and investigates the mechanisms that regulate these experience-dependent changes. Current studies focus on 1) how experience-dependent plasticity in the nucleus accumbens regulates reward processing, with a focus on the consumption of palatable foods and stress modulation of food intake, and 2) examine the regulatory role of neuromodulators in hedonic feeding.

The ultimate goal of the Christoffel Lab’s research is to understand how adaptive changes in brain function occur and how this can lead to the development of psychiatric disorders. We employ cutting-edge technologies to understand the complex interactions of multiple neural systems that allow us to adapt to our environment and regulate motivated behavior.


The Cohen Lab investigates how functional brain networks in humans interact and reconfigure when confronted with changing cognitive demands, when experiencing transformations across development, and when facing disruptions in healthy functioning due to disease. We are also interested in how this neural flexibility contributes to flexibility in control and the ability to learn, as well as the consequences of dysfunction in this flexibility. We use behavioral, neuroimaging, and clinical approaches taken from neuroscience, psychology, and mathematics to address our research questions.


The overriding goal of Dr. Coleman’s work is to identify novel treatments for alcohol use disorders (AUD) and associated peripheral disease pathologies. Currently, this includes: the role of neuroimmune Signaling in AUD pathology, the role of alcohol-associated immune dysfunction in associated disease states, and novel molecular and subcellular mediators of immune dysfunction such as extracellular vesicles, and regenerative medicine approaches such as microglial repopulation.


Our lab studies the underlying structural and functional substrates of behavior in disease using rodent models. Specifically our goal is to develop a better understanding of how cellular function in the CNS is affected by drug-related substances (opioids, cannabinoids) in the context of HIV infection. That includes the study of how drugs of abuse exacerbate the pathogenesis of neuroAIDS but also the study of targets within the endocannabinoid system for the potential treatment of HIV. We use various in vivo and in vitro techniques, including primary cell culture models, behavioral conditioning tasks, live cell imaging, and electrophysiology.


Dr. Gilmore’s research group is applying state-of–the-art magnetic resonance imaging and image analysis techniques to study human brain development in 0-6 year olds.  Approaches include structural, diffusion tensor, and resting state functional imaging, with a focus on cortical gray and white matter development and its relationship to cognitive development.  Studies include normally developing children, twins, and children at high risk for schizophrenia and bipolar illness.  We also study the contributions of genetic and environmental risk factors to early brain development in humans.  A developing collaborative project with Flavio Frohlich, PhD will use imaging to study white and gray matter development in ferrets and its relationship with cortical oscillatory network development.


Girault, Jessica She/Her Website | Email Publications
PHD PROGRAM Neuroscience

We are a lab using state-of-the art neuroimaging techniques to study brain development and its links to emerging cognition and behavior in young infants and children. We study both typically developing infants and those at risk for neurodevelopmental disorders, including autism spectrum disorder. We are particularly interested in how family study designs can help us understand genetic influences on brain development.


Gordon-Larsen’s work integrates biology, behavior, and environment to understand, prevent and treat obesity, cardiovascular and cardiometabolic diseases. She works with biomarker, microbiome, metabolome, genetic, weight, diet, and environment data using multilevel modeling and pathway-based analyses. She works with several longitudinal cohorts that span more than 30 years. Most of her work uses data from the US and China. Her research teams include a wide variety of scientists working in areas such as genetics, medicine, bioinformatics, biostatistics, microbiology, nutrition, and epidemiology.


Hantman, Adam | Email Publications
RESEARCH INTEREST Behavior, Neurobiology, Physiology

The Hantman Lab is interested in how functions emerge from network activity in the nervous system. Particularly, we study how the nervous system generates patterns of activity that control our bodies in the world. Our approach combines genetics, anatomy, physiology, perturbations, and a dynamical systems approach.


Flexibility of the brain allows the same sensory cue to have very different meaning to the animal depending on past experience (i.e. learning and memory) or current context. Our goal is to understand this process at the levels of synaptic plasticity, neural circuit and behavior. Our model system is a simple brain of the fruit fly, Drosophila. We employ in vivo electrophysiology and two-photon calcium imaging together with genetic circuit manipulation. Taking advantage of this unique combination, we aim to find important circuit principles that are shared with vertebrate systems.

 


Our preclinical research is based on the concept that drugs of abuse gain control over behavior by hijacking molecular mechanisms of neuroplasticity within brain reward circuits. Our lab focuses on three main research questions: (1) Discover the neural circuits and molecular mechanisms that mediate the reinforcing and pleasurable subjective effects of alcohol and other drugs, (2) Identify the long-term effects of cocaine and alcohol abuse during adolescence, (3) Identify novel neural targets and validate pharmacological compounds that may be used to treat problems associated with alcohol and drug abuse. The lab culture is collaborative and dynamic, innovative, and team-based. We are looking for colleagues who share an interest in understanding how alcohol hijacks reward pathways to produce addiction.


The Jacox Lab aims to improve patient care and outcomes in oral health. This goal takes shape via several tracks of interdisciplinary human studies:

-A primary focus of the lab has been on outcomes of jaw surgery patients, who suffer from Dentofacial Disharmonies (DFD). Patients with DFD have severe skeletal disproportions with underbites or open bites, necessitating orthodontics and jaw surgery for full correction. Roughly 80% of our patients with DFD exhibit speech distortions, compared to 5% of the general population, which negatively impact their self-confidence and quality of life. Despite patients pursuing invasive surgery, it is unknown whether jaw surgery is palliative for articulation errors. We are using ultrasound, audio and video imaging to explore the mechanism of articulation errors among patients with DFD. Furthermore, our lab is conducting a longitudinal study of DFD patients to determine if jaw surgery improves speech distortions, in collaboration with oral surgeons, linguistics and speech pathology.

-An additional focus of our lab has been studying use of Animal Assisted Therapy for management of anxiety and pain in dentistry. Dental anxiety effects 21-50% of patients and is associated with poor long-term oral health outcomes and need for urgent care due to dental avoidance. Non-pharmacological behavior interventions like dog therapy holds promise for reducing pain and anxiety perception for patients, and therefore improving dental experiences and promoting improved health outcomes. The lab is conducting a randomized controlled trial to evaluate best practices for canine therapy in pediatric dentistry, in collaboration with pediatric dentists, a psychology professor whose expertise is anxiety, and the UNC Biobehavioral Lab.

-As part of the COVID-19 research response, we are studying FDA-approved antiseptic mouth rinses for their ability to limit salivary viral infectivity to reduce risk of SARS-CoV-2 transmission. If an oral rinse is found to be efficacious at inactivating the SARS-CoV-2 virus, it could be a valuable preventative measure in settings where masks are removed, such as dental care, social settings, eating out, or work presentations. This study is conducted in collaboration with leading virologists and infectious disease experts at UNC.


Antiretroviral therapy (ART) is effective in suppressing HIV-1 replication in the periphery, however, it fails to eradicate HIV-1 reservoirs in patients. The main barrier for HIV cure is the latent HIV-1, hiding inside the immune cells where no or very low level of viral particles are made. This prevents our immune system to recognize the latent reservoirs to clear the infection. The main goal of my laboratory is to discover the molecular mechanisms how HIV-1 achieves its latent state and to translate our understanding of HIV latency into therapeutic intervention.

Several research programs are undertaking in my lab with a focus of epigenetic regulation of HIV latency, including molecular mechanisms of HIV replication and latency establishment, host-virus interaction, innate immune response to viral infection, and the role of microbiome in the gut health. Extensive in vitro HIV latency models, ex vivo patient latency models, and in vivo patient and rhesus macaque models of AIDS are carried out in my lab. Multiple tools are applied in our studies, including RNA-seq, proteomics, metabolomics, highly sensitive digital droplet PCR and tissue RNA/DNAscope, digital ELISA, and modern and traditional molecular biological and biochemical techniques. We are also very interested in how non-CD4 expression cells in the Central Nervous System (CNS) get infected by HIV-1, how the unique interaction among HIV-1, immune cells, vascular cells, and neuron cells contributes to the initial seeding of latent reservoirs in the CNS, and whether we can target the unique viral infection and latency signaling pathways to attack HIV reservoirs in CNS for a cure/remission of HIV-1 and HIV-associated neurocognitive disorders (HAND). We have developed multiple tools to attack HIV latency, including latency reversal agents for “Shock and Kill” strategy, such as histone deacetylase inhibitors and ingenol family compounds of protein kinase C agonists, and latency enforcing agents for deep silencing of latent HIV-1. Several clinical and pre-clinical studies are being tested to evaluate their potential to eradicate latent HIV reservoirs in vivo. We are actively recruiting postdocs, visiting scholars, and technicians. Rotation graduate students and undergraduate students are welcome to join my lab, located in the UNC HIV Cure Center, for these exciting HIV cure research projects.


Emotional behavior is regulated by a host of chemicals, including neurotransmitters and neuromodulators, acting on specific circuits within the brain. There is strong evidence for the existence of both endogenous stress and anti-stress systems. Chronic exposure to drugs of abuse and stress are hypothesized to modulate the relative balance of activity of these systems within key circuitry in the brain leading to dysregulated emotional behavior. One of the primary focuses of the Kash lab is to understand how chronic drugs of abuse and stress alter neuronal function, focusing on these stress and anti-stress systems in brain circuitry important for anxiety-like behavior. In particular, we are interested in defining alterations in synaptic function, modulation and plasticity using a combination of whole-cell patch-clamp physiology, biochemistry and mouse models.  Current projects are focused on the role of a unique population of dopamine neurons in alcoholism and anxiety.


Kato, Hiroyuki Website | Email Publications
PHD PROGRAM Neuroscience
RESEARCH INTEREST Behavior, Neurobiology, Physiology

Our primary goal is to identify how our brain processes sound inputs to detect complex patterns, such as our language. Using mouse auditory cortex as a model system, we combine multiple cutting-edge techniques (e.g. in vivo whole-cell recording, two-photon calcium imaging, and optogenetics) in behaving animals to dissect the circuits that connect vocal inputs to behavioral outputs. Findings in the simple mouse cortex should provide a first step towards the ultimate understanding of the complex human brain circuits that enable verbal communication, and how they fail in psychiatric disorders.


Trauma and stress are common in life. While most individuals recover following trauma/stress exposure, a substantial subset will go on to develop adverse neuropsychiatric outcomes such as chronic pain, posttraumatic stress disorder (PTSD), depression, and postconcussive symptoms. Our research is focused on understanding individual vulnerability to such outcomes and to identify novel biomarkers and targets for therapeutic intervention. We use translational research approaches, including bioinformatics analysis of large prospective human cohort data, animal model research, and systems and molecular biology to better understand pathogenic mechanisms. We are particularly interested in the genetic and psychiatric/social factors influencing adverse outcome development, as well as biological sex differences that contribute to higher rates of these outcomes in women vs men.


Our lab develops computer-driven optical instrumentation for applications in biology and neurosciences, beyond traditional imaging systems. Our research is interdisciplinary and welcomes backgrounds in optical engineering, computer sciences, biology or neurosciences. Our primary goal is to develop optical brain-machine interfaces and other technologies that use advanced light sources and detectors to probe and manipulate cellular functions deep into tissue at depths where traditional microscopy tools can no longer retrieve images.


My lab is driven to understand the neuronal pathologies underlying neurodevelopmental disorders, and to use this information to identify novel therapeutics.  We focus our research on monogenic autism spectrum disorders, including Angelman, Rett, and Pitt-Hopkins syndromes.  We employ a diverse number of techniques including: electrophysiology, molecular biology, biochemistry, mouse engineering, and in vivo imaging.


Reissner, Kathryn Website | Email Publications
PHD PROGRAM Neuroscience

Research in our lab is focused on understanding how cocaine abuse affects glial cell physiology, in particular neuron-astrocyte communication.  We utilize the rat cocaine self-administration/reinstatement model, which allows us to test hypotheses regarding not only how chronic cocaine use affects properties of astrocytes and the tripartite synapse, but also how compounds affecting glial cells may influence synaptic processing within the brain’s reward neurocircuitry and behavioral measures of drug seeking.


Robinson, Donita Website | Email Publications
PHD PROGRAM Neuroscience

The Robinson lab currently explores the neurodynamics of reinforcement pathways in the brain by using state-of-the-art, in vivo recording techniques in freely moving rats. Our goal is to understand the interplay of mesostriatal, mesocortical and corticostriatal circuits that underlie action selection, both in the context of normal development and function, and in the context of psychiatric disorders that involve maladaptive behavior, such as alcohol use disorder, adolescent vulnerability to drug use and addiction, cocaine-induced maternal neglect and binge-eating disorders.


Rodríguez-Romaguera, Jose Website | Email Publications
PHD PROGRAM Neuroscience
RESEARCH INTEREST Behavior, Neurobiology, Pharmacology

Psychiatric disorders such as Anxiety and Autism Spectrum Disorders are often characterized by a rapid and amplified arousal response to stimuli (hyperarousal), which is often followed by a motivational drive to avoid such stimuli. Our lab studies the neuronal circuits that drive hyperarousal states by monitoring neuronal activity with single-cell precision using in vivo calcium imaging techniques in both head-fixed (two-photon microscopy) and freely-moving (miniature head-mounted microscopes) mice to record and track the activity of hundreds of individual neurons with both genetic and projection specificity.


Our primary research interest is to identify the mechanisms that regulate neural circuit organization and function at distinct stages of adult neurogenesis, and to understand how circuit-level information-processing properties are remodeled by the integration of new neurons into existing circuits and how disregulation of this process may contribute to various neurological and mental disorders. Our long-range goals are to translate general principles governing neural network function into directions relevant for understanding neurological and psychiatric diseases. We are addressing these questions using a combination of cutting-edge technologies and approaches, including optogenetics, high-resolution microscopy, in vitro and in vivo electrophysiology, genetic lineage tracing and molecular biology.


The Tarantino lab studies addiction and anxiety-related behaviors in mouse models using forward genetic approaches. We are currently studying a chemically-induced mutation in a splice donor site that results in increased novelty- and cocaine-induced locomotor activity and prolonged stress response. We are using RNA-seq to identify splice variants in the brain that differ between mutant and wildtype animals. We are also using measures of initial sensitivity to cocaine in dozens of inbred mouse strains to understand the genetics, biology and pharmacokinetics of acute cocaine response and how initial sensitivity might be related to addiction. Finally, we have just started a project aimed at studying the effects of perinatal exposure to dietary deficiencies on anxiety, depression and stress behaviors in adult offspring. This study utilizes RNA-seq and a unique breeding design to identify parent of origin effects on behavior and gene expression in response to perinatal diet.


My research interests involve investigation of proinflammatory neuroimmune and epigenetic mechanisms in animal models of developmental neurobiology and neurodegeneration, including (1) alcohol pharmacology, (2) alcohol responsivity and tolerance, (3) adolescent neurodevelopment, (4) cholinergic system and neurocircuitry, (5) microglial function, and (6) Alzheimer’s disease. A major focus of the laboratory is elucidation of neuroimmune and epigenetic mechanisms underlying adolescent binge alcohol-induced disruption of basal forebrain cholinergic neurocircuitry in adulthood. A second major focus of the laboratory is investigation of lasting adolescent binge drinking-induced neuroimmune priming as a novel etiological factor contributing to the onset and progression of basal forebrain neuropathology in Alzheimer’s disease. Our laboratory combines ex vivo and in vivo rodent models of alcohol abuse and Alzheimer’s disease with innovative molecular techniques.


Social behavior is composed of a variety of distinct forms of interactions and is fundamental to survival. Several neural circuits must act in concert to allow for such complex behavior to occur and perturbations, either genetic and/or environmental, underlie many psychiatric and neurodevelopment disorders. The Walsh lab focuses on gaining an improved understanding of the biological basis of behavior using a multi-level approach to elucidate the molecular and circuit mechanisms underlying motivated social behavior. The goal of our research is to uncover how neural systems govern social interactions and what alterations occur in disease states to inform the development of novel therapeutics or treatment strategies.

One of the major focuses of the Walsh lab is on understanding how genetic mutations, as well as experience, lead to circuit adaptations that govern impaired behavior seen in mouse models of autism spectrum disorders (ASD). Our systems level analysis includes: 1) modeling these disorders with well described genetic markers, 2) defining causal relationships between activity within discrete anatomical structures in the brain that are critical to the physiology of the symptom under investigation (e.g. sociability), 3) performing deep characterization of the physiological profiles of these circuits and using that information to target specific receptors or molecules that may not have been considered for the treatment of specific ASD symptoms.


Early life and adult pain can have drastic effects on neurodevelopment and overall quality of life. In the Williams’ Pain, Aging, and Interdisciplinary Neurobehavioral (P.A.I.N.) Lab, our research focuses on behavioral neuroscience and the mechanisms of neurobiology and neurophysiology of pain processing, with a special emphasis on the neonatal. The ultimate research goal is to better understand, recognize, and alleviate pain in the newborn to improve the quality of life in adulthood by uncovering new assessment tools and interventional strategies. Our research interests include the mechanisms of neurobiology and neurophysiology of pain processing, neonatal pain, chronic pain, neurobehavior, osteoarthritis, translational medicine, anesthesia/analgesics, and evoked and non-evoked pain assessment tools. The P.A.I.N. Lab has both pre-clinical and clinical studies to help close the gap in translation.